Product Preview
 5-Volt-Only Driver/Receiver With an Integrated Standby Mode

EIA-232D and CCITT V. 28

The MC145705/06/07 are a series of silicon-gate CMOS transceiver ICs that fulfill the electrical specifications of EIA-232D and CCITT V. 28 while operating from a single +5 volt power supply. These transceiver series are high performance and low power consumption devices that are equipped with standby and output enable function.

A voltage doubler and inverter convert the +5 volts to ± 10 volts. This is accomplished through an on-board 20 kHz oscillator and four inexpensive external electrolytic capacitors.

The MC145705 is composed of two drivers and three receivers, the MC145706 has three drivers and two receivers, and the MC145707 has three drivers and three receivers. These drivers and receivers are virtually identical to those of the MC145407.

Available Driver/Receiver Combinations

Device	Drivers	Receivers	No. of Pins
MC145705	2	3	20
MC145706	3	2	20
MC145707	3	3	24

Drivers:

- ± 7.5 Output Swing
- 300Ω Power-Off Impedance
- Output Current Limiting
- TTL and CMOS Compatible Inputs
- Three-State Outputs During Standby Mode
- Hold Output OFF (MARK) State by TxEN Pin

Receivers:

- ± 25 Volt Input Range
- 3 to $7 \mathrm{k} \Omega$ Input Impedance
- 0.8 V Hysteresis for Enhanced Noise Immunity
- Three-State Outputs During Standby Mode

Charge Pumps:

- +5 to ± 10 V Dual Charge Pump Architecture
- Supply Outputs Capable of Driving Three Drivers on the MC145403/06 Simultaneously
- Requires Four Inexpensive Electrolytic Capacitors
- On-Chip 20 kHz Oscillators

MC145705
MC145706 MC145707

MC145705
2 Drivers/3 Receivers

MC145706
3 Drivers/2 Receivers

MC145707 3 Drivers/3 Receivers

FUNCTION DIAGRAM

CHARGE PUMPS

RECEIVER

DRIVER

MAXIMUM RATINGS (Voltage Polarities Referenced to GND)

Rating	Symbol	Value	Unit
DC Supply Voltage	$V_{C C}$	-0.5 to +6.0	V
Input Voltage Rx1-3 Inputs DI1-3 Inputs	VIR	$\begin{gathered} \mathrm{V}_{\mathrm{SS}^{-15}} \text { to } \mathrm{V}_{\mathrm{DD}}+15 \\ -0.5 \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \end{gathered}$	V
DC Current Per Pin	1	± 100	mA
Power Dissipation	PD	1	W
Operating Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-85 to +150	${ }^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, it is recommended that the voltage at the DI and DO pins be constrained to the range $G N D \leq V_{D I} \leq V_{D D}$ and $G N D$ $\leq \mathrm{V}_{\mathrm{DO}} \leq \mathrm{V}_{\mathrm{CC}}$. Also, the voltage at the Rx pin should be constrained to (VSS-15V) $\leq \mathrm{V}_{\mathrm{Rx} 1-3} \leq\left(\mathrm{V}_{\mathrm{DD}}+15 \mathrm{~V}\right)$, and Tx should be constrained to $\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{Tx} 1-3} \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied
to an appropriate logic voltage level
(e.g., GND or V_{CC} for DI , and GND for
$R x$).

RECOMMENDED OPERATING LIMITS

Parameter	Symbol	Min	Typ	Max	Unit
Power Supply	V_{CC}	4.5	5	5.5	V
Operating Temperature Range	T_{A}	-40	-	85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Voltage polarities referenced to GND $=0 \mathrm{~V} ; \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4=10 \mu \mathrm{~F}$; $\mathrm{T} \mathrm{A}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit
DC Power Supply	V_{CC}	4.5	5	5.5	V
Quiescent Supply Current (Output Unloaded, Input Low)	ICC	-	1.7	3.5	mA
Quiescent Supply Current (Stand-By Mode) (Output Unloaded, Input Open)	$\mathrm{ICC}(\mathrm{STB})$	-	<10	20	$\mu \mathrm{A}$
Control Signal Input Voltage (STB, TxEN) $\begin{gathered}\text { Logic Low } \\ \text { Logic High }\end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}-0.5$	-	0.5	V
Control Signal Input Current $\begin{array}{r}\text { Logic Low (TxEN) } \\ \text { Logic High (STB) }\end{array}$	$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \end{aligned}$	$-$	-	$\begin{gathered} -10 \\ 10 \end{gathered}$	$\mu \mathrm{A}$
Charge Pumps Output Voltage (C1, C2, C3, C4 $=10 \mu \mathrm{~F}$) Output Voltage (VDD) $\begin{array}{r} \text { Ioad }=0 \mathrm{~mA} \\ \text { I load }=5 \mathrm{~mA} \\ \text { I load }=10 \mathrm{~mA} \end{array}$	$V_{D D}$	$\begin{aligned} & 8.5 \\ & 7.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \\ 9.0 \\ \hline \end{gathered}$	$\frac{11}{-}$	v
Output Voltage (VSS) $\begin{aligned} l_{\text {load }} & =0 \mathrm{~mA} \\ l_{\text {load }} & =5 \mathrm{~mA} \\ l_{\text {load }} & =10 \mathrm{~mA} \end{aligned}$	$\mathrm{v}_{S S}$	$\begin{aligned} & \hline-8.5 \\ & -7.5 \\ & -6.0 \end{aligned}$	$\begin{gathered} \hline-10.0 \\ -9.2 \\ -8.6 \end{gathered}$	$\begin{gathered} -11 \\ - \end{gathered}$	

RECEIVER ELECTRICAL SPECIFICATIONS

(Voltage polarities referenced to $\mathrm{GND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4=10 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter		Symbol	Min	Typ	Max	Unit
Input Turn-On Threshold ($\mathrm{VDO}^{1-3}=\mathrm{V}_{\mathrm{OL}}$)	Rx1-3	$\mathrm{V}_{\text {on }}$	1.35	1.8	2.35	V
Input Turn-Off Threshold ($\mathrm{VDO}^{1-3}=\mathrm{V}_{\mathrm{OH}}$)	Rx1-3	$V_{\text {Off }}$	0.75	1	1.25	V
Input Threshold Hysteresis ($\mathrm{V}_{\text {On }}=\mathrm{V}_{\text {off }}$)	Rx1-3	V hys	0.6	0.8	-	V
Input Resistance		$\mathrm{R}_{\text {in }}$	3	5.4	7	$\mathrm{k} \Omega$
High-Level Output Voltage (DO1-3) $V_{R x} 1-3=-3 \text { to }-25 \mathrm{~V}$	$\begin{aligned} & I_{\text {out }}=-20 \mu \mathrm{~A} \\ & \mathrm{I}_{\text {out }}=-1 \mathrm{~mA} \end{aligned}$	V_{OH}	$\begin{aligned} & V_{C C}-0.1 \\ & V_{C C}-0.7 \end{aligned}$	$\overline{4.3}$	-	V
Low-Level Output Voltage (DO1-3) $V_{R x} 1-3=+3 \text { to }+25 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\text {out }}=+20 \mu \mathrm{~A} \\ & \mathrm{I}_{\text {out }}=+1.6 \mathrm{~mA} \end{aligned}$	VOL	-	$\begin{gathered} 0.01 \\ 0.5 \end{gathered}$	$\begin{aligned} & 0.1 \\ & 0.7 \end{aligned}$	V

DRIVER ELECTRICAL SPECIFICATIONS
(Voltage polarities referenced to $\mathrm{GND}=0 \mathrm{~V} ; \mathrm{V} C \mathrm{C}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4=10 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter		Symbol	Min	Typ	Max	Unit
Digital Input Voltage Logic Low Logic High	DI1-3	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \hline \end{aligned}$	$\overline{2}$	-	0.8	V
$\begin{array}{r} \text { Input Current } \\ \mathrm{V}_{\mathrm{DI}}=\mathrm{GND} \\ \mathrm{~V}_{\mathrm{DI}}=\mathrm{V}_{\mathrm{CC}} \end{array}$	DI1-3	$\begin{aligned} & \mathrm{IIL} \\ & \mathrm{I}_{\mathrm{IH}} \\ & \hline \end{aligned}$		7	± 1.0	$\mu \mathrm{A}$
Output High Voltage ($\mathrm{V}_{\text {DI1-3 }}=$ Logic Low, $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$)	$\begin{aligned} & \mathrm{T} \times 1-3 \\ & \mathrm{~T} \times 1-6^{\star} \end{aligned}$	V_{OH}	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	-	V
Output Low Voltage $\left(\mathrm{V}_{\text {DI1-3 }}=\right.$ Logic High, $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$)	$\begin{gathered} \mathrm{T} \times 1-3 \\ \mathrm{~T} \times 1-6^{*} \end{gathered}$	VOL	$\begin{aligned} & -6 \\ & -5 \end{aligned}$	$\begin{aligned} & -7.5 \\ & -6.5 \end{aligned}$	-	V
Off Source Impedance	Tx1-3	$Z_{\text {off }}$	300	-	-	Ω
Output Short Circuit Current (VCC $=5.5 \mathrm{~V}$) Tx1-3 Shorted to GND** Tx1-3 Shorted to $\pm 15 \mathrm{~V} * * *$		ISC	-	-	$\begin{gathered} \pm 60 \\ \pm 100 \end{gathered}$	mA

* Specifications for a MC14570X powering a MC145406 or MC145403 with three additional drivers/receivers.
** Specification is for one Tx output to be shorted at a time. Should all three driver outputs be shorted simultaneously, device power dissipation limits could be exceeded.
*** This condition could exceed package limitations.
SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \pm 10 \%\right.$; C1, C2, C3, C4 $=10 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{A}}=-40$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Min	Typ	Max	Unit
Drivers						
```Propagation Delay Time Low-to-High ( \(\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) or 2500 pF ) High-to-Low ( \(\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) or 2500 pF )```	Tx1-3	tPLH	-	0.5	1	$\mu \mathrm{s}$
		tPHL	-	0.5	1	
Output Slew Rate Minimum Load $\mathrm{R}_{\mathrm{L}}=7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	Tx1-3	SR	-	$\pm 6$	$\pm 30$	V/4s
Maximum Load $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$			-	$\pm 5$	-	
Output Disable Time		tDAZ	-	4	10	$\mu \mathrm{s}$
Output Enable Time		tDZA	-	25	50	ms

## Receivers

Propagation Delay Time Low-to-High	DO1-3	tplH	-	-	1	$\mu \mathrm{s}$
High-to-Low		${ }^{\text {tPHL }}$	-	-	1	
Output Rise Time	DO1-3	$\mathrm{t}_{\mathrm{r}}$	-	250	400	ns
Output Fall Time	DO1-3	$t_{f}$	-	40	100	ns
Output Disable Time		traz	-	4	10	$\mu \mathrm{s}$
Output Enable Time		trZA	-	25	50	ms

## TRUTH TABLE

Drivers

DI	TxEN	STB	Tx
$X$	$X$	$H$	$Z^{*}$
$X$	$L$	$L$	$L$
$H$	$H$	$L$	$L$
$L$	$H$	$L$	$H$

[^0]Receivers

$\mathbf{R x}$	STB	DO
X	H	$\mathrm{Z}^{*}$
$H$	L	L
L	L	H

## PIN DESCRIPTIONS

## VCC - DIGITAL POWER SUPPLY

This digital supply pin is connected to the logic power supply. This pin should have a $0.33 \mu \mathrm{~F}$ capacitor to ground.

## GND - GROUND

Ground return pin is typically connected to the signal ground pin of the EIA-232D connector (connector pin 7) as well as to the logic power supply ground.

## VDD - POSITIVE POWER SUPPLY

This is the positive output of the on-chip voltage doubler and the positive power supply input of the driver/receiver sections of the device. This pin requires an external storage capacitor to filter the $50 \%$ duty cycle voltage generated by the charge pump.

## VSS - NEGATIVE POWER SUPPLY

This is the negative output of the on-chip voltage doubler/ inverter and the negative power supply input of the driver/ receiver sections of the device. This pin requires an external storage capacitor to filter the $50 \%$ duty cycle voltage generated by the charge pump.

TxEN - OUTPUT ENABLE
This is the driver output enable pin. When this pin is in logic low level, the condition of the driver outputs ( $\mathrm{Tx} 1-3$ ) are in keep OFF (mark) state.

## STB — STAND-BY

The device enters the stand-by mode while this pin is connected to the logic high level. During the stand-by mode, driver and receiver output pins become high-impedance state. In this condition, supply current ICC is below $10 \mu \mathrm{~A}$ (TYP) and can be operated with low current consumption.

## C2+, C2-, C1+, C1- - VOLTAGE DOUBLER AND INVERTER

These are the connections to the internal voltage doubler and inverter, which generate the $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{SS}}$ voltages.

## Rx1, Rx2 (Rx3) - RECEIVE DATA INPUT

These are the EIA-232D receive signal inputs. A voltage between +3 and +25 V is decoded as a space, and causes the corresponding DO pin to swing to ground ( 0 V ). A voltage between -3 and -25 V is decoded as a mark, and causes the DO pin to swing up to $V_{\mathrm{CC}}$.

## D01, DO2 (DO3) - DATA OUTPUT

These are the receiver digital output pins, which swing from $\mathrm{V}_{\mathrm{CC}}$ to GND. Each output pin is capable of driving one LSTTL input load.
Output level of these pins is high-impedance while in standby mode.

## DI1, DI2 (DI3) — DATA INPUT

These are the high-impedance digital input pins to the drivers. Input voltage levels on these pins must be between $\mathrm{V}_{\mathrm{CC}}$ and GND.
The level of these input pins are TTL/CMOS compatible.

## Tx1, Tx2 (Tx3) - TRANSMIT DATA OUTPUT

These are the EIA-232D transmit signal output pins, which swing toward $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\text {SS }}$. A logic one at a DI input causes the corresponding Tx output to swing toward VSS. The actual levels and slew rate achieved will depend on the output loading (RL/CL).
The minimum output impedance is $300 \Omega$ when turned off.

## SWITCHING CHARACTERISTICS




## PACKAGE DIMENSIONS

MC145705/06
P SUFFIX
PLASTIC
CASE 738-03

NOTES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION "L" TO CENTER OF LEAD WHEN FORMED PARALLEL
4. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	25.66	27.17	1.010	1.070
B	6.10	6.60	0.240	0.260
C	3.81	4.57	0.150	0.180
D	0.39	0.55	0.015	0.022
E	1.27 BSC		0.050 BSC	
F	1.27	1.77	0.050	0.070
G	2.54 BSC		0.100 BSC	
J	0.21	0.38	0.008	0.015
K	2.80	3.55	0.110	0.140
L	7.62 BSC		0.300 BSC	
M	$0^{\circ}$	$15^{\circ}$	$0^{\circ}$	$15^{\circ}$
N	0.51	1.01	0.020	0.040

NOTES:
DIMENSIONS A AND B ARE DATUMS AND T IS A DATUM SURFACE
2. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
3. CONTROLLING DIMENSION: MILLIMETER
4. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
5. MAXIMUM MOLD PROTRUSION $0.15(0.006)$ PER SIDE.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	12.65	12.95	0.499	0.510
B	7.40	7.60	0.292	0.299
C	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.50	0.90	0.020	0.035
G	1.27	BSC	0.050	
BSC				
J	0.25	0.32	0.010	0.012
K	0.10	0.25	0.004	0.009
M	$0^{\circ}$	$7^{\circ}$	$0^{\circ}$	$7^{\circ}$
P	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029



NOTES

1. CHAMFERRED CONTOUR OPTIONAL
2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARAUIEI
3. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.
4. CONTROLING DIMENSION: INCH.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	31.25	32.13	1.230	1.265
B	6.35	6.85	0.250	0.270
C	3.69	4.44	0.145	0.175
D	0.38	0.51	0.015	0.020
E	1.27 BSC		0.050 BSC	
F	1.02	1.52	0.040	0.060
G	2.54 BSC		0.100 BSC	
J	0.18	0.30	0.007	0.012
K	2.80	3.55	0.110	0.140
L	7.62 BSC		0.300 BSC	
M	$0^{\circ}$	$15^{\circ}$	$0^{\circ}$	$15^{\circ}$
N	0.51	1.01	0.020	0.040

## NOTES:

1. DIMENSIONS A AND B ARE DATUMS AND T IS A DATUM SURFACE.
2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
3. CONTROLLING DIMENSION: MILLIMETER
4. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
5. MAXIMUM MOLD PROTRUSION $0.15(0.006)$ PER SIDE.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	15.25	15.54	0.601	0.612
B	7.40	7.60	0.292	0.299
C	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.41	0.90	0.016	0.035
G	1.27 BSC	0.050 BSC		
J	0.229	0.317	0.0090	0.0125
K	0.127	0.292	0.0050	0.0115
M	$0^{\circ}$	$8^{\circ}$	$0^{\circ}$	$8^{\circ}$
P	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

## Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

MOTOROLA


[^0]:    ${ }^{*} \mathrm{~V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{Tx}} \leq \mathrm{V}_{\mathrm{DD}}$

